Polytype Families in Zinc Sulphide Crystals*

BY S. MARDIX, E. ALEXANDER, O. BRAFMAN AND I. T. STEINBERGER

Department of Physics, The Hebrew University, Jerusalem, Israel

(Received 17 August 1966)

The concept of a polytype family is defined. Five new polytypes (8 8), (9 7)₃, (12 4)₃, (7 4 2 3)₃, (4 3 3 2 2 2)₃ belonging to the family 16L-48R were identified in one vapour-phase grown crystal. Another five (18 2)₃, (5 3 3 4 2 3), (11 4 3 2)₃, (5 2 2 3 5 3)₃, (5 2 2 3 6 2), found in a second crystal, belong to the 20L-60R family. Such occurrence of several members of the same family in a zinc sulphide specimen is fairly common. Polytype families are discussed in the framework of a geometrical model of polytypism in zinc sulphide crystals, based on periodically recurring slip.

Introduction

In two previous publications (Brafman, Alexander & Steinberger, 1967 and Mardix, Brafman & Steinberger, 1967) nine new zinc sulphide polytypes were reported. These polytypes were found to have well-ordered structures. Their optical properties are dependent essentially on the percentage of hexagonality α (Brafman & Steinberger, 1966) of the structure. It has been stressed that polytypism in ZnS cannot be understood on the basis of the theory (*e.g.* Krishna & Verma, 1965) which applies to polytypism in SiC and that many more ZnS polytypes have to be identified in order to have an adequate experimental basis for solving the problem.

In the present paper the structure of ten more ZnS polytypes will be described. These ten polytypes were found in two vapour phase grown* crystal specimens, five polytypes in each. It will be shown that polytypes of the same specimen have closely related structures. Evidence will be brought to demonstrate that the occurrence of related polytypes in the same spectrum is a fairly common phenomenon and it is due to a periodic slip at certain close-packed atomic planes (Mardix & Steinberger, 1966).

Identification of the polytypes

The reflected intensities I_{hkl} were computed for all possible Zhdanov sequences of the polytypes, utilizing an IBM 7040 computer. For the computation the equation

$$I_{hkl} \propto (f_{Zn}^2 + f_S^2 + 2f_{Zn}f_S \cos 2\pi lp)(A_{Zn}^2 + B_{Zn}^2) \\ \times \frac{1 + \cos^2 2\theta}{\sin 2\theta} \cdot \frac{\cos \theta}{(\cos^2 \varphi - \sin^2 \theta)^4}$$

was used. f_{Zn} and f_{S} are the atomic structure factors of Zn and S; $p = \frac{3}{4}m$; θ is the Bragg angle; φ is the angle between the reflecting plane, for a given θ , and the rotation axis. $A_{\text{Zn}} = \Sigma \cos 2\pi (hx + ky + lz)$ and $B_{\text{Zn}} = \Sigma \sin 2\pi (hx + ky + lz)$. The polarization and Lorentz correction factors were taken into account in the above computation. No correction was done for the absorption. The calculation of this factor is complicated in our case because of the inconvenient forms of the crystals. It was also impossible to work on small samples of crystals, thus eliminating absorption corrections, because of the polytype transformation induced by breaking off small pieces from the specimen at our disposal.

Qualitatively it is evident that the reflexions near the zero line will suffer only a small reduction in intensity whilst reflexions having larger *l*-values will suffer more pronounced weakening.

The period of a polytype was approximately estimated by measuring the distances of the (10.1) spots, and afterwards determined accurately by counting the number of spots within a single period of intensities along the (10.1) column (Verma & Krishna, 1966).

Photometric measurement of intensities is very inaccurate because of small spot size (0.1 mm) and the unevenness in blackening due to the crystal shape.

On the other hand, it is easy to compare, with a magnifying glass, the relative intensities and to order them in a descending sequence. This sequence of intensities is then divided arbitrarily into seven groups denoted by: vvs; vs; s; w; vw; vvw; a (Tables 1–10).

Table 1.	Con	iparis	on (of cal	lculatea	and	obse	rvea	l inten-
sities for	the	16 <i>H</i>	(8	8) pc	olytype	(regi	on a	of	crystal
				175	S14)				

		/	
1	Calc.	Obs.	Further observed relations between intensities
)	4063	w	5 > 6
1	1478	w	2 > 0 > 1
2	5873	w	
3	3369	w	
4	27852	vs	
5	143330	vvs	
6	112139	vvs	
7	6924	w	
8	11144	S	
9	3832	w	

The observed intensities were symmetrical with respect to the zero line (l=0).

^{*} Part of a Ph.D. thesis to be submitted by one of the authors (S.M.) to the Senate of the Hebrew University.

^{*} Grown and supplied by 'Yissum' Research Development Company, The Hebrew University, Jerusalem, Israel.

Table 2. Comparison of calculated and observed intensities for the 48R (9 7)₃ polytype (region b of crystal in 175 S14)

Table 5. Comparison of calculated and observed	
intensities for the $48R$ (4 3 3 2 2 2) ₃ polytype (region d	I
of crystal 175 S14)	

I	Calc.	Obs.	I	Calc.	F re Obs.	urther observed elations between intensities
1	1436	w	2	4087	S	$\overline{17} > \overline{14}$
4	2698	5	3	225	vvw	$1\overline{4} \gg \overline{20}$
7	5329	S	8	9214	vs	$\overline{29} > \overline{20}$
10	2189	w	11	791	ťw	7 > 4
13	53038	vvs	14	104653	vvs	25 > 22
16	103114	vvs	17	153797	vvs	10 > 1
19	56582	vvs	20	17373	vvs	
22	2620	S	23	10088	vs	
25	8266	5	26	1764	vw	
			29	22727	vvs	

I	Calc.	Obs.	I	Calc.	Obs.	Further observed relations between intensities
1	13561	w	2	5152	vw	$\overline{14} > \overline{11}$
4	10069	w	5	5793	vw	$10 > 13 \simeq 16$
7	9651	w	8	9214	vw	$1 > 4 \simeq 7$
10	39600	vs	11	49947	vvs	
13	32595	vs	14	87921	vvs	
16	39983	vs	17	40146	vs	
19	29000	s	20	4655	vw	
22	9984	UW	$\overline{23}$	106341	vvs	
25	87132	vvs	26	6724	vw	
28	2185	vvw	29	11648	vw	

Table 6. Comparison of calculated and observed
intensities for the $60R$ (18 2) ₃ polytype (regions a and b
of crystal 220 S2)

Table 3. Comparison of calculated and observed intensities for the 48R (12 4)₃ polytype (region c of crystal 175 S14)

			/		
I	Calc.	Obs.	1	Calc.	Obs.
1	2326	vw	2	4789	w
4	0	а	5	2961	w
7	3854	w	8	0	а
10	14950	5	11	10397	w
13	27464	5	14	122608	vs
16	33670	US.	17	249138	vvs
19	29410	5	20	0	а
22	17888	S	23	7296	w
25	5978	w	26	12047	w
			29	11813	и

I	Calc.	Obs.	1	Calc.	Obs.	Further observed relations between intensities
2	4247	W'	Ī	3017	w	$\overline{19} > \overline{22}$
5	5366	w	4	1749	vw	2 > Ī
8	6329	w	7	601	vw	$\overline{13} \simeq 4 > 7$
11	7113	w	10	0	а	
14	7706	w	13	1606	vw	
17	8116	w	16	16705	5	
20	8373	w	19	497253	vvs	
23	8531	w	22	177502	vvs	
26	8721	w	25	34568	vs	
29	9207	w	28	14712	5	
			31	7832	w	
			34	4703	w	

Table 4. Comparison of calculated and observed intensities for the 48R (7 4 2 3)₃ polytype (region e of crystal 175 S14)

Table 7. Comparison of calculated and observed
intensities for the 20L (5 3 3 4 2 3) polytype (region c
of crystal 220 S2)
Eventhan at an e

						Further observed relations between	I	Calc.	Obs.	1	Calc.	Obs.	relations between intensities
1	Calc.	Obs.	1	Calc.	Obs.	intensities	0	3995	w				7 > 6
1	3467	vw	2	5012	vw	13 > 22	1	3916	w	Ī	3366	w	$\overline{3} > 2 \simeq \overline{8}$
4	2698	vw	5	13300	s	17 > 14	2	383	vw	2	29304	S	
7	7833	w	8	9212	s	$\frac{1}{20} > 5$	3 4	36113	s s	3 4	77170	UW US	
10	10893	s	11	23173	vs	$\overline{2} > 1 \simeq 4$	5	34080	5	5	2446	w	
13	87815	vvs	14	66115	vvs		6	161245	vvs	5	75457	vs	
16	27357	vs	17	137924	vvs		7	33007	s	7	187652	vvs	
19	27125	vs	20	17373	s		ŝ	96990	s vs	ş	42862	vw s	
22	65925	vvs	23	7988	w		10	47631	5	10	47631	s	
25	6545	w	26	44006	vvs		11	26609	w	11	60213	5	
28	8154	w	29	10895	w		12	206	а	12	15682	vw	

Table 8. Comparison of calculated and observed intensities for the 60R (11 4 3 2)₃ polytype (region d of crystal 220 S2)

ı	Calc.	Obs.	I	Calc.	Obs.	Further observed relations between intensities
1	1329	vw	2	5092	w	$\overline{20} > \overline{17} > \overline{23}$
4	6921	w	3	10013	5	$\overline{29} > \overline{26}$
7	5520	w	8	1094	vw	10 > 13
10	27488	vs	11	206	vvw	$19 \simeq 22 > 28 \simeq 31$
13	17252	vs	14	26917	vs	
16	11054	5	17	157074	vvs	
19	67858	vs	$\overline{20}$	203046	vvs	
22	51204	vs	23	122221	vvs	
25	4631	w	26	17612	vs	
28	32500	vs	29	34961	vs	
31	29741	vs				
34	9499	w				

Table 9. Comparison of calculated and observed intensities for the 60R (5 2 2 3 5 3)₃ polytype (region e of crystal 220 S2)

1	Calc.	Obs.	l	Calc.	Obs.
2	11098	w	I	3262	vw
5	2683	vw	4	12761	w
8	12429	w	7	7450	vw
11	37539	S	10	9163	vw
14	5737	vw	13	60946	vs
17	116725	vvs	16	11785	vw
20	2093	vvw	19	212292	vvs
23	11619	v w	22	64253	vs
26	89954	vs	25	17284	w
29	10542	vw	28	88804	vs
			31	8968	vw

Table 10. Comparison of calculated and observedintensities for the 20L (5 2 2 3 6 2) polytype (region fof crystal 220 S2)

l	Calc.	Obs.	I	Calc.	Obs.	Further observed relations between intensities
0	15978	w				6>9≃8≃9
1	6078	U W	Ī	6078	vw	11>12
2	22043	w	2	10996	w	$2 > 0 \simeq 7$
3	6861	vw	3	6861	vw	7>4>2
4	29 476	S	4	13794	w	
5	54791	vs	3	54791	vs	
6	61204	vs	6	285799	vvs	
7	16727	w	7	16727	w	
8	1313	vvw	8	100291	vvs	
9	97774	vvs	9	94774	vvs	
10	14656	vw	10	14656	w	
11	58837	5	11	58837	5	
12	41057	5	12	537	а	

The identification of the polytype is effected by looking amongst the calculated intensities for the sequence that fits the observed data.

This procedure leads to a unique identification of the polytype even if the relative intensities of only a small number (about five) of reflexions are used. As an example we shall bring the identification procedure of the 20L (5 2 2 3 6 2) polytype.

An X-ray photograph of the (10.1) column is given in Fig. 3 and the intensity data in Table 10.

From the X-ray photograph it is seen that the 8th spot above the zero line is the weakest, whilst the 6th spot below the equator is the strongest one.

From birefringence measurements it was concluded (Brafman, Alexander & Steinberger, 1966) that the number of Zhdanov numbers in the sequence of this 20L polytype is six.

The overall number of such sequences is about 680. Only 40 of them have a weak spot belonging to l = +8 or l = -8 (not necessarily the weakest); 14 of these sequences have a very strong spot for l = -6 (or l =+6). The further observation that spots nos. -8 and -9 (below the equator) are stronger than nos. -9 and -10, leaves us with only one fitting sequence, namely (5 2 2 3 6 2). The fit of the other reflexion intensities in the same column, which have not been mentioned above, fully confirms the identification.

Had the comparison been started with a different set of spots, this procedure would have led to the same identification.

It is pointed out that this identification procedure is based on the fact that large variations occur in the intensity distributions calculated for the various Zhdanov sequences. Therefore any occasional small discrepancy found between the calculated intensities of the 'fitting' sequence and the observed intensities of a certain spot (which may be due to the neglected absorption correction) is immaterial for identification purposes.

Results

Black and white photomicrographs of the crystals, as seen between partially crossed polarizers, are presented in Figs. 1(a) and 2(a). Direct observation reveals, in each crystal, a set of parallel colored bands due to variations of birefringence (see, e.g. Brafman & Steinberger, 1966). The faces of crystal regions differing in birefringence are usually tilted with respect to each other. It should be emphasized that in spite of the tilts the direction of the c axis stays constant throughout each specimen, as indicated by the arrows. Fine striations appear in the figures; they are parallel to each other and perpendicular to the common c axis.

Some crystal regions between neighboring striations are indicated and named in the Figures. Each region of this kind has a uniform birefringence. Particularly interesting adjacent regions are represented, with a higher magnification, in Figs. 1(b) and 2(b). The birefringence of the neighbors is the same in these cases, but a fine striation appears between them and a slight angle of tilt can also be perceived.

X-ray oscillation photographs around the c axis were taken within the crystal regions named in Figs. l(a) and 2(a). All the X-ray photographs showed welldefined and sharp reflexion spots, with no appreciable

Fig. 2.(a) Black and white photograph of crystal 220 S2 between nearly crossed polarizers (\times 24). (b) Regions e and f of Fig. 2(a) (\times 150).

Fig. 3. (10.1) column of an oscillation photograph around the c axis c_1 the 20L (5 2 2 3 6 2) polytype. Cu K α radiation, 60 m n dia. camera (×3). The position of the zero line is indicated by an arrow.

Fig. 1.(a) Black and white photograph of crystal 175 S14 between nearly crossed polarizers (\times 24).(b) Regions a and b of Fig. 1(a) (\times 57).

'smearing out'. It follows that the structure of the regions named in Figs. 1(a) and 2(a) are well-defined and one-dimensional stacking disorder can be neglected.

The observed X-ray reflexion intensity distributions (for the (10.1) columns) and the only fitting calculated ones are given in Tables 1 to 10. The hundreds of other calculated non-fitting distributions belonging to the correct unit-cell dimensions but to the wrong layer sequences are not presented because of lack of space. All structures reported here are new ZnS polytypes; their crystallographic description is summarized in Table 11.

The degree of birefringence of the polytypes, Δn , was found to be proportional to α , in accord with results for other ZnS polytypes (Brafman & Steinberger, 1966; Mardix, Brafman & Steinberger, 1967).

The five identified structures of the crystal 175 S14 have either a 16-layer or a rhombohedral 48-layer unit cell; those of the crystal 220 S2 have either a 20-layer unit cell or a rhombohedral 60-layer one.

The polytypes in each of the described specimens will be henceforth regarded as being members of the same 'polytype family'; a family is defined here as consisting of all structures with the same periodicity m, as well as of the rhombohedral structures with 3m-layer periodicity.

Discussion

A prominent result of the present work is the occurrence of several members of the same polytype family in a single specimen. Six other specimens were found each including a different identified polytype family. These polytype families are: 6H-18R, 8H-24R, 10L-30R, 24L-72R, 32L-96R and 40L-120R. Farkas-Jahnke (1965) also reports a ZnS crystal which includes several 24-layer polytypes. The crystals described include, apart from the wide regions mentioned, many narrow regions of unknown structures as well. However, the values of birefringence measured in the wide regions recur in the narrow ones. As the degree of birefringence yields directly the percentage of hexagonality of the structure (Brafman & Steinberger, 1966), it seems likely that most of the narrow bands also belong to the same polytype family. It should be noted

in this respect that even crystals consisting solely of a large number of narrow bands exhibit only few welldefined degrees of birefringence, recurring many times.

The occurrence of several members of a polytype family in a single specimen can be understood on the basis of allotropic transformations observed in ZnS crystals (Mardix & Steinberger, 1966). It has been stated that transformations from a given polytype to another one can take place owing to slips by vectors of the type a/3[21.0], recurring periodically at certain (00.1) planes. Such transformations by periodic slips were indicated from correlation between tilt angles and structures (Mardix & Steinberger, 1966). Regions a and b of crystal 175 S14 (Table 11) furnish a simple example of the periodic slip process. Region a has the Zhdanov symbol (8 8), *i.e.* in the unit cell eight (00.1) planes are stacked in cyclic order and eight in anticyclic order. Slip by an a/3[21.0] vector at the ninth plane (in each unit cell) transposes this plane to the cyclic part of the period. The structure thus transforms to (9 7)₃.

Regions e and f of crystal 220 S2 furnish another example of such a transformation. In these cases the change of structure is revealed under the microscope by the tilt (Mardix & Steinberger, 1966) and the striation between the neighboring regions [Figs. 1(b) and 2(b)]. There is no change in birefringence, since the percentage of hexagonality stays constant in these transformations.

If in an *m*-layer polytype more than one slip per unit cell takes place, and the slips recur with the period of the lattice, other members of the *m*-layer polytype family will be generated (with various percentages of hexagonality). The appearance of several members of the same family in a specimen may thus be simply understood by assuming that most of the crystal has been composed of a single *m*-layer polytype region. Its various parts have subsequently undergone different periodic slips, all being of the type described above and therefore belonging to the same family.

In principle it is possible to generate polytypes from the hexagonal 2H structure by slips which recur with a periodicity larger than that of the 2H lattice. 'Even polytypes' (those where the sum of the elements of the

Table 1	1.	Descri	ption	of	new	ZnS	pol	vtv	pes
								, . ,	

				Per cent	
Crystal			Layer	hexagonality	Space
notation	Region	Polytype	sequence	α	group
175 S14	a	16 <i>H</i>	(88)	12.5	$P6_3mc$
	Ь	48 <i>R</i>	(97)3	12.5	R3m
	с	48 <i>R</i>	$(12 4)_3$	12.5	R3m
	d	48 <i>R</i>	(4 3 3 2 2 2)3	50.0	R3m
	е	48 <i>R</i>	$(7 4 2 3)_3$	25.0	R3m
220 S2	a	60 <i>R</i>	(18 2)3	10.0	R3m
	Ь	60 <i>R</i>	$(18\ 2)_3$	10.0	R3m
	с	20 <i>L</i>	(5 3 3 4 2 3)	30.0	P 3m1
	d	60 <i>R</i>	$(11 4 3 2)_3$	20.0	R3m
	е	60 <i>R</i>	$(5\ 2\ 2\ 3\ 5\ 3)_3$	30.0	R3m
	f	20L	(522362)	30.0	P3m1

Zhdanov sequence is even) as well as the cubic (∞) structure will be generated in this way. The 'parent polytype' could thus be formed from the 2*H* structure.

All the above considerations deal only with the geometrical framework of polytypism in ZnS crystals. Further experiments are in progress in order to ascertain the physical mechanism underlying the slip process.

Actually it seems that all polytypes in vapour-phase grown crystals are even^{*}. In this Laboratory, altogether about 35 polytypes were found, with 21 different layer periodicities, all being even. The literature on polytypes in vapour-phase grown ZnS seems also to confirm this rule, except for a very early publication (Strock & Brophy, 1955) on a single extremely small specimen $(0.1 \times 0.01 \text{ mm})$ which was reported to include altogether nine structures. Direct observations in this Laboratory (to be published) revealed that the hexagonal 2H structure can actually be transformed to polytypes, and that this transformation takes place by the periodic slip process. The overall route of polytype formation is therefore probably the following: hexagonal – parent polytype – polytype family.

References

- BRAFMAN, O., ALEXANDER, E. & STEINBERGER, I. T. (1967). Acta Cryst. 22, 347.
- BRAFMAN, O. & STEINBERGER, I. T. (1966). Phys. Rev. 143, 501.
- FARKAS-JAHNKE, M. (1965). Acta Cryst. 18, 571.
- KRISHNA, P. & VERMA, A. R. (1965). Z. Kristallogr. 121, 36.
- MARDIX, S., BRAFMAN, O. & STEINBERGER, I. T. (1967). Acta Cryst. 22, 000.
- MARDIX, S. & STEINBERGER, I. T. (1966). Israel J. Chem. 3, 243.
- STROCK, W. & BROPHY, V. A. (1955). Amer. Min. 40, 94.VERMA, A. R. & KRISHNA, P. (1966). Polymorphism and Polytypism in Crystals. New York: John Wiley.

Acta Cryst. (1967). 22, 812

Reinvestigation of the Crystal Structure of Ammonium Bromochloroiodate(I), NH₄BrICl, at 140° K

BY TINY MIGCHELSEN AND AAFJE VOS

Laboratorium voor Structuurchemie, Rijksuniversiteit Groningen, Bloemsingel 10, Groningen, The Netherlands

(Received 5 September 1966)

Reinvestigation of the crystal structure of NH₄BrICl at 140°K shows that the (BrICl)⁻ ions are statistically distributed in the crystal. Owing to this disorder no accurate values could be obtained for the bond lengths. The discussion of the observed average structure indicates, however, that for (BrICl)⁻ ions with an orientation as reported earlier by Mooney, the I-Cl bond is much longer (*ca*. 0.5 Å) than the value which Mooney observed (2.38 Å). The I-Br distance is comparable to Mooney's value, 2.50 Å.

Description of the structure

As part of a programme to obtain accurate values for bond lengths and angles in polyhalide ions consisting of different halogen atoms (KICl₄. H₂O, Elema, de Boer & Vos, 1963; N(CH₃)₄ICl₂, Visser & Vos, 1964), the structure of NH₄BrlCl (Mooney, 1937) was reinvestigated at 140°K.

The structure as reported by Mooney is shown in Fig. 1. The present refinement shows that accurate values for the bond lengths and angles cannot be obtained because of disorder in the crystals. The discussion given in the present paper indicates, however, that for the $(Br-I-CI)^-$ ion shown in Fig. 1, the I-Cl bond is much longer, approximately 0.5 Å, than the value observed by Mooney, 2.38 Å, and considerably longer than the sum of the covalent radii, 2.33 Å. The I-Br distance is comparable to Mooney's value, 2.50 Å.

As in the isomorphous compound CsI_2Br (Carpenter, 1966) there is one short intermolecular distance, $I(3) \cdots Br(1) \simeq 3.64$ Å (van der Waals distance 4.10 Å). This distance is observed in a nearly linear $I \cdots Br-I-Cl$ chain (Fig. 1, Table 3), suggesting that the bonding may be described as 4-center, 6-electron bonding (Hach & Rundle, 1951; Pimentel, 1951).

Experimental

Crystals were prepared according to Mooney's method. The halogen composition of the sample found by chemical analysis (I = 46.9, Br = 31.1, Cl = 13.6%) showed reasonable agreement with the formula NH₄BrICl (I = 48.7, Br = 30.7, Cl = 13.6%).

The crystallographic data were obtained from Weissenberg photographs taken at 140°K. The crystals are orthorhombic; the systematic absences indicate as pos-

^{*} Uneven polytypes 9R, 15R and 21R were found in ZnS minerals. A 27L polytype reported by two of us (O.B. & I.T.S.) was later found to be a 26L (17 4 2 3) polytype.